博客
关于我
逻辑回归_训练多元分类器
阅读量:378 次
发布时间:2019-03-05

本文共 1576 字,大约阅读时间需要 5 分钟。

逻辑回归_训练多元分类器

一对多

# 训练多元分类器from sklearn.linear_model import LogisticRegressionfrom sklearn import datasetsfrom sklearn.preprocessing import StandardScaler# 加载数据iris = datasets.load_iris()features = iris.datatarget = iris.target​scaler = StandardScaler()features_standardized = scaler.fit_transform(features)# multi_class="ovr"   表示一对多的逻辑回归    另外一种是MLR 多元逻辑回归logistic_regression = LogisticRegression(random_state=0, multi_class="ovr")#logistic_regression_MNL = LogisticRegression(random_state=0, multi_class="multinomial")# 训练模型model = logistic_regression.fit(features_standardized, target)DiscussionOn their own, logistic regressions are only binary classifiers, meaning they cannot handle target vectors with more than two classes. However, two clever extensions to logistic regression do just that. First, in one-vs-rest logistic regression (OVR) a separate model is trained for each class predicted whether an observation is that class or not (thus making it a binary classification problem). It assumes that each observation problem (e.g. class 0 or not) is independentAlternatively in multinomial logistic regression (MLR) the logistic function we saw in Recipe 15.1 is replaced with a softmax function:P(yI=k|X)=eβkxi∑Kj=1eβjxiP(yI=k|X)=eβkxi∑j=1Keβjxi where  P(yi=k|X)P(yi=k|X)  is the probability of the ith observation's target value,  yiyi , is class k, and K is the total number of classes. One practical advantage of the MLR is that its predicted probabilities using predict_proba method are more reliableWe can switch to an MNL by setting multi_class='multinomial'

转载地址:http://xprg.baihongyu.com/

你可能感兴趣的文章
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Vue过渡 & 动画---vue工作笔记0014
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty 的 Handler 链调用机制
查看>>
Netty 编解码器详解
查看>>
Netty 解决TCP粘包/半包使用
查看>>
Netty 调用,效率这么低还用啥?
查看>>
Netty 高性能架构设计
查看>>
Netty+Protostuff实现单机压测秒级接收35万个对象实践经验分享
查看>>
Netty+SpringBoot+FastDFS+Html5实现聊天App详解(一)
查看>>
netty--helloword程序
查看>>
netty2---服务端和客户端
查看>>
Netty5.x 和3.x、4.x的区别及注意事项(官方翻译)
查看>>
netty——bytebuf的创建、内存分配与池化、组成、扩容规则、写入读取、内存回收、零拷贝
查看>>
netty——Channl的常用方法、ChannelFuture、CloseFuture
查看>>
netty——EventLoop概念、处理普通任务定时任务、处理io事件、EventLoopGroup
查看>>
netty——Future和Promise的使用 线程间的通信
查看>>
netty——Handler和pipeline
查看>>
Vue输出HTML
查看>>